Displaying 321 – 340 of 560

Showing per page

Removable singularities for weighted Bergman spaces

Anders Björn (2006)

Czechoslovak Mathematical Journal

We develop a theory of removable singularities for the weighted Bergman space 𝒜 μ p ( Ω ) = { f analytic in Ω Ω | f | p d μ < } , where μ is a Radon measure on . The set A is weakly removable for 𝒜 μ p ( Ω A ) if 𝒜 μ p ( Ω A ) Hol ( Ω ) , and strongly removable for 𝒜 μ p ( Ω A ) if 𝒜 μ p ( Ω A ) = 𝒜 μ p ( Ω ) . The general theory developed is in many ways similar to the theory of removable singularities for Hardy H p spaces, B M O and locally Lipschitz spaces of analytic functions, including the existence of counterexamples to many plausible properties, e.g. the union of two compact removable singularities needs not be removable....

Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé

David Sauzin (1995)

Annales de l'institut Fourier

Henri Poincaré avait déjà remarqué que les variétés stable et instable du pendule perturbé, défini par l’hamiltonien H ( q , p , t ) = p 2 / 2 + ( - 1 + cos q ) ( 1 - μ sin ( t / ϵ ) ) , ne coïncident pas lorsque que le paramètre μ n’est pas nul, mais qu’on peut leur associer un même développement formel divergent en puissance de ϵ . Cette divergence est ici analysée au moyen de la récente théorie de la résurgence, et du calcul étranger qui permet de trouver un équivalent asymptotique de l’écart des deux variétés pour ϵ tendant vers zéro - du moins cela est-il montré...

Series in Mittag-Leffler Functions: Inequalities and Convergent Theorems

Paneva-Konovska, Jordanka (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 30A10, 30B10, 30B30, 30B50, 30D15, 33E12In studying the behaviour of series, defined by means of the Mittag-Leffler functions, on the boundary of its domain of convergence in the complex plane, we prove Cauchy-Hadamard, Abel, Tauber and Littlewood type theorems. Asymptotic formulae are also provided for the Mittag-Leffler functions in the case of " values of indices that are used in the proofs of the convergence theorems for the considered series.

Some Banach spaces of Dirichlet series

Maxime Bailleul, Pascal Lefèvre (2015)

Studia Mathematica

The Hardy spaces of Dirichlet series, denoted by p (p ≥ 1), have been studied by Hedenmalm et al. (1997) when p = 2 and by Bayart (2002) in the general case. In this paper we study some L p -generalizations of spaces of Dirichlet series, particularly two families of Bergman spaces, denoted p and p . Each could appear as a “natural” way to generalize the classical case of the unit disk. We recover classical properties of spaces of analytic functions: boundedness of point evaluation, embeddings between...

Currently displaying 321 – 340 of 560