Structure quasi-conforme et dimension conforme d'après P. Pansu, M. Gromov et M. Bourdon
By , , we denote the -th symmetric product of a metric space as the space of the non-empty finite subsets of with at most elements endowed with the Hausdorff metric . In this paper we shall describe that every isometry from the -th symmetric product into itself is induced by some isometry from into itself, where is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the -th symmetric product of the Euclidean space up to bi-Lipschitz equivalence and...
Let be a mapping in the Sobolev space . Then the change of variables, or area formula holds for provided removing from counting into the multiplicity function the set where is not approximately Hölder continuous. This exceptional set has Hausdorff dimension zero.
In this paper a quite complete picture is given of the absolute continuity on the boundary of a quasiconformal map B3 → D, where B3 is the unit 3-ball and D is a Jordan domain in R3 with boundary 2-rectifiable in the sense of geometric measure theory. Moreover, examples are constructed, for each n ≥ 3, showing that quasiconformal maps from the unit n-ball onto Jordan domains with boundary (n - 1)-rectifiable need not have absolutely continuous boundary values.
In this paper some estimates for the Poisson extension of a K-quasihomography on the unit circle are given.