Radial growth and variation of Dirichlet finite holomorphic functions in the disk
A well known result of Beurling asserts that if f is a function which is analytic in the unit disc and if either f is univalent or f has a finite Dirichlet integral then the set of points for which the radial variation is infinite is a set of logarithmic capacity zero. In this paper we prove that this result is sharp in a very strong sense. Also, we prove that if f is as above then the set of points such that as r → 1 is a set of logarithmic capacity zero. In particular, our results give...
We study the ramification of the Gauss map of complete minimal surfaces in on annular ends. This is a continuation of previous work of Dethloff-Ha (2014), which we extend here to targets of higher dimension.
Let a sequence be given such that the exponential system forms a Riesz basis in and be a sequence of independent real-valued random variables. We study the properties of the system as well as related problems on estimation of entire functions with random zeroes and also problems on reconstruction of bandlimited signals with bandwidth via their samples at the random points .
Holomorphic correspondences are multivalued maps between Riemann surfaces Z and W, where Q̃₋ and Q̃₊ are (single-valued) holomorphic maps from another Riemann surface X onto Z and W respectively. When Z = W one can iterate f forwards, backwards or globally (allowing arbitrarily many changes of direction from forwards to backwards and vice versa). Iterated holomorphic correspondences on the Riemann sphere display many of the features of the dynamics of Kleinian groups and rational maps, of which...
Définitions et propriétés des notions nouvelles de demi-plans, droites et abscisses de régularité et de suprarégularité pour une famille de germes dirichlétiens, par rapport à un support commun de référence. Conditions suffisantes (du type de Landau-Fekete) d’égalité de ces abscisses et expressions algorithmiques de majorants. Relations de dépendance (du type de V. Bernstein) entre les différentes abscisses considérées d’une famille donnée. Extensions de résultats classiques relatifs à la famille...
Dans le chapitre I on indique la croissance de et de la fonction convexe pour que de
We develop a theory of removable singularities for the weighted Bergman space , where is a Radon measure on . The set is weakly removable for if , and strongly removable for if . The general theory developed is in many ways similar to the theory of removable singularities for Hardy spaces, and locally Lipschitz spaces of analytic functions, including the existence of counterexamples to many plausible properties, e.g. the union of two compact removable singularities needs not be removable....
In this paper, we study the relation between the deficiencies concerning a meromorphic function f(z), its derivative f′(z) and differential-difference monomials f(z)mf(z+c)f′(z), f(z+c)nf′(z), f(z)mf(z+c). The main results of this paper are listed as follows: Let f(z) be a meromorphic function of finite order satisfying lim sup r→+∞ T(r, f) T(r, f ′ ) <+∞, and c be a non-zero complex constant, then δ(∞, f(z)m f(z+c)f′(z))≥δ(∞, f′) and δ(∞,f(z+c)nf′(z))≥ δ(∞, f′). We also investigate the value...