Value sharing of entire functions.
On montre que tout point de Misiurewicz dans l’ensemble de Mandelbrot possède un système fondamental de voisinages connexes dans .
In this paper we introduce the notion of weak normal and quasinormal families of holomorphic curves from a domain in into projective spaces. We will prove some criteria for the weak normality and quasinormality of at most a certain order for such families of holomorphic curves.
The following problem, suggested by Laguerre’s Theorem (1884), remains open: Characterize all real sequences {μk} k=0...∞ which have the zero-diminishing property; that is, if k=0...n, p(x) = ∑(ak x^k) is any P real polynomial, then k=0...n, p(x) = ∑(μk ak x^k) has no more real zeros than p(x). In this paper this problem is solved under the additional assumption of a weak growth condition on the sequence {μk} k=0...∞, namely lim n→∞ | μn |^(1/n) < ∞. More precisely, it is established that...
In this paper we study the uniqueness for meromorphic functions sharing one value, and obtain some results which improve and generalize the related results due to M. L. Fang, X. Y. Zhang, W. C. Lin, T. D. Zhang, W. R. Lü and others.
Under certain mild analytic assumptions one obtains a lower bound, essentially of order , for the number of zeros and poles of a Dirichlet series in a disk of radius . A more precise result is also obtained under more restrictive assumptions but still applying to a large class of Dirichlet series.
We study complex zeros of eigenfunctions of second order linear differential operators with real even polynomial potentials. For potentials of degree 4, we prove that all zeros of all eigenfunctions belong to the union of the real and imaginary axes. For potentials of degree 6, we classify eigenfunctions with finitely many zeros, and show that in this case too, all zeros are real or pure imaginary.
This paper is devoted to studying the growth and oscillation of solutions and their derivatives of higher order non-homogeneous linear differential equations with finite order meromorphic coefficients. Illustrative examples are also treated.
We investigate the exponent of convergence of the zero-sequence of solutions of the differential equation , (1) where , P₁(z),P₂(z),P₃(z) are polynomials of degree n ≥ 1, Q₁(z),Q₂(z),Q₃(z), (j=1,..., k-1) are entire functions of order less than n, and k ≥ 2.