Displaying 21 – 40 of 71

Showing per page

On global smoothness preservation in complex approximation

George A. Anastassiou, Sorin G. Gal (2002)

Annales Polonici Mathematici

By using the properties of convergence and global smoothness preservation of multivariate Weierstrass singular integrals, we establish multivariate complex Carleman type approximation results with rates. Here the approximants fulfill the global smoothness preservation property. Furthermore Mergelyan's theorem for the unit disc is strengthened by proving the global smoothness preservation property.

On meromorphic equivalence of linear difference operators

Gertrude K. Immink (1990)

Annales de l'institut Fourier

We consider linear difference equations whose coefficients are meromorphic at . We characterize the meromorphic equivalence classes of such equations by means of a system of meromorphic invariants. Using an approach inspired by the work of G. D. Birkhoff we show that this system is free.

On the analytic capacity and curvature of some Cantor sets with non-σ-finite length.

Pertti Mattila (1996)

Publicacions Matemàtiques

We show that if a Cantor set E as considered by Garnett in [G2] has positive Hausdorff h-measure for a non-decreasing function h satisfying ∫01 r−3 h(r)2 dr < ∞, then the analytic capacity of E is positive. Our tool will be the Menger three-point curvature and Melnikov’s identity relating it to the Cauchy kernel. We shall also prove some related more general results.

On the approximation of entire functions over Carathéodory domains

Devendra Kumar, Harvir S. Kasana (1994)

Commentationes Mathematicae Universitatis Carolinae

Let D be a Carathéodory domain. For 1 p , let L p ( D ) be the class of all functions f holomorphic in D such that f D , p = [ 1 A D | f ( z ) | p d x d y ] 1 / p < , where A is the area of D . For f L p ( D ) , set E n p ( f ) = inf t π n f - t D , p ; π n consists of all polynomials of degree at most n . In this paper we study the growth of an entire function in terms of approximation...

On the completeness of the system { t λ n log m n t } in C 0 ( E )

Xiangdong Yang (2012)

Czechoslovak Mathematical Journal

Let E = n = 1 I n be the union of infinitely many disjoint closed intervals where I n = [ a n , b n ] , 0 < a 1 < b 1 < a 2 < b 2 < < b n < , lim n b n = . Let α ( t ) be a nonnegative function and { λ n } n = 1 a sequence of distinct complex numbers. In this paper, a theorem on the completeness of the system { t λ n log m n t } in C 0 ( E ) is obtained where C 0 ( E ) is the weighted Banach space consists of complex functions continuous on E with f ( t ) e - α ( t ) vanishing at infinity.

Currently displaying 21 – 40 of 71