Displaying 561 – 580 of 887

Showing per page

Singular sets of holonomy maps for algebraic foliations

Gabriel Calsamiglia, Bertrand Deroin, Sidney Frankel, Adolfo Guillot (2013)

Journal of the European Mathematical Society

In this article we investigate the natural domain of definition of a holonomy map associated to a singular holomorphic foliation of the complex projective plane. We prove that germs of holonomy between algebraic curves can have large sets of singularities for the analytic continuation. In the Riccati context we provide examples with natural boundary and maximal sets of singularities. In the generic case we provide examples having at least a Cantor set of singularities and even a nonempty open set...

Spectral theory of translation surfaces : A short introduction

Luc Hillairet (2009/2010)

Séminaire de théorie spectrale et géométrie

We define translation surfaces and, on these, the Laplace operator that is associated with the Euclidean (singular) metric. This Laplace operator is not essentially self-adjoint and we recall how self-adjoint extensions are chosen. There are essentially two geometrical self-adjoint extensions and we show that they actually share the same spectrum

Stability of the bases and frames reproducing kernels in model spaces

Anton Baranov (2005)

Annales de l'institut Fourier

We study the bases and frames of reproducing kernels in the model subspaces K Θ 2 = H 2 Θ H 2 of the Hardy class H 2 in the upper half-plane. The main problem under consideration is the stability of a basis of reproducing kernels k λ n ( z ) = ( 1 - Θ ( λ n ) ¯ Θ ( z ) ) / ( z - λ ¯ n ) under “small” perturbations of the points λ n . We propose an approach to this problem based on the recently obtained estimates of derivatives in the spaces K Θ 2 and produce estimates of admissible perturbations generalizing certain results of W.S. Cohn and E. Fricain.

Currently displaying 561 – 580 of 887