The topology of deformation spaces of Kleinian groups.
Nous développons une théorie de Voronoï géométrique. En l’appliquant aux familles classiques de réseaux euclidiens (par exemple symplectiques ou orthogonaux), nous obtenons notamment de nouveaux résultats de finitude concernant les configurations de vecteurs minimaux et les réseaux particuliers (par exemple parfaits) de ces familles. Les méthodes géométriques introduites sont également illustrées par l’étude d’objets voisins (formes de Humbert) ou analogues (surfaces de Riemann).
For a G-covering Y → Y/G = X induced by a properly discontinuous action of a group G on a topological space Y, there is a natural action of π(X,x) on the set F of points in Y with nontrivial stabilizers in G. We study the covering of X obtained from the universal covering of X and the left action of π(X,x) on F. We find a formula for the number of fixed points of an element g ∈ G which is a generalization of Macbeath's formula applied to an automorphism of a Riemann surface. We give a new method...
Sea X una superficie de Riemann de género g. Diremos que la superficie X es elíptica-hiperelíptica si admite una involución conforme h de modo que X/〈h〉 tenga género uno. La involución h se llama entonces involución elíptica-hiperelíptica. Si g > 5 entonces la involución h es única, ver [1]. Llamamos simetría a toda involución anticonforme de X. Sea Aut±(X) el grupo de automorfismos conformes y anticonformes de X y σ, τ dos simetrías de X con puntos fijos y tales que {σ, hσ} y {τ, hτ} no...
We obtain a representation of the mapping class group of genus 2 surface in terms of a coordinate system of the Teichmüller space defined by trace functions.
The focus of this paper are questions related to how various geometric and analytical properties of hyperbolic 3-manifolds determine the commensurability class of such manifolds. The paper is for the large part a survey of recent work.