Displaying 201 – 220 of 700

Showing per page

Familles d'opérateurs potentiels

Francis Hirsch (1975)

Annales de l'institut Fourier

Ce travail se compose de trois parties. Dans la première partie nous donnons quelques résultats sur les noyaux-mesure de Hunt sur R + . Nous caractérisons à ce propos les transformées de Laplace des fonctions logarithmiquement convexes et dé-crois-san-tes sur R + . Dans la deuxième partie, nous démontrons que, si μ est un noyau-mesure de Hunt sur R + et si ( P t ) t 0 est un semi-groupe à contraction dans un espace de Banach X tel que son générateur infinitésimal soit d’image dense, alors l’opérateur P t d μ ( t ) défini au...

Fonctions biharmoniques adjointes

Emmanuel P. Smyrnelis (2010)

Annales Polonici Mathematici

The study of the equation (L₂L₁)*h = 0 or of the equivalent system L*₂h₂ = -h₁, L*₁h₁ = 0, where L j ( j = 1 , 2 ) is a second order elliptic differential operator, leads us to the following general framework: Starting from a biharmonic space, for example the space of solutions (u₁,u₂) of the system L₁u₁ = -u₂, L₂u₂ = 0, L j ( j = 1 , 2 ) being elliptic or parabolic, and by means of its Green pairs, we construct the associated adjoint biharmonic space which is in duality with the initial one.

Fractional integro-differentiation in harmonic mixed norm spaces on a half-space

Karen L. Avetisyan (2001)

Commentationes Mathematicae Universitatis Carolinae

In this paper some embedding theorems related to fractional integration and differentiation in harmonic mixed norm spaces h ( p , q , α ) on the half-space are established. We prove that mixed norm is equivalent to a “fractional derivative norm” and that harmonic conjugation is bounded in h ( p , q , α ) for the range 0 < p , 0 < q . As an application of the above, we give a characterization of h ( p , q , α ) by means of an integral representation with the use of Besov spaces.

Currently displaying 201 – 220 of 700