Existence of positive bounded solutions for some nonlinear polyharmonic elliptic systems.
Ce travail se compose de trois parties. Dans la première partie nous donnons quelques résultats sur les noyaux-mesure de Hunt sur . Nous caractérisons à ce propos les transformées de Laplace des fonctions logarithmiquement convexes et dé-crois-san-tes sur . Dans la deuxième partie, nous démontrons que, si est un noyau-mesure de Hunt sur et si est un semi-groupe à contraction dans un espace de Banach tel que son générateur infinitésimal soit d’image dense, alors l’opérateur défini au...
The study of the equation (L₂L₁)*h = 0 or of the equivalent system L*₂h₂ = -h₁, L*₁h₁ = 0, where is a second order elliptic differential operator, leads us to the following general framework: Starting from a biharmonic space, for example the space of solutions (u₁,u₂) of the system L₁u₁ = -u₂, L₂u₂ = 0, being elliptic or parabolic, and by means of its Green pairs, we construct the associated adjoint biharmonic space which is in duality with the initial one.
In this paper some embedding theorems related to fractional integration and differentiation in harmonic mixed norm spaces on the half-space are established. We prove that mixed norm is equivalent to a “fractional derivative norm” and that harmonic conjugation is bounded in for the range , . As an application of the above, we give a characterization of by means of an integral representation with the use of Besov spaces.