Some estimates of integrals with a composition operator.
Simple examples of bounded domains are considered for which the presence of peculiar corners and edges in the boundary causes that the double layer potential operator acting on the space of all continuous functions on can for no value of the parameter be approximated (in the sub-norm) by means of operators of the form (where is the identity operator and is a compact linear operator) with a deviation less then ; on the other hand, such approximability turns out to be possible for...
Two kinds of orthogonal decompositions of the Sobolev space W̊₂¹ and hence also of for bounded domains are given. They originate from a decomposition of W̊₂¹ into the orthogonal sum of the subspace of the -solenoidal functions, k ≥ 1, and its explicitly given orthogonal complement. This decomposition is developed in the real as well as in the complex case. For the solenoidal subspace (k = 0) the decomposition appears in a little different form. In the second kind decomposition the -solenoidal...
Noting that a resolvent is associated with a convolution kernel satisfying the domination principle if and only if has the dominated convergence property, we give some remarks on the existence of a resolvent.
In this paper, the axisymmetric flow in an ideal fluid outside the infinite cylinder () where denotes the cylindrical co-ordinates in is considered. The motion is with swirl (i.e. the -component of the velocity of the flow is non constant). The (non-dimensional) equation governing the phenomenon is (Pd) displayed below. It is known from e.g. that for the problem without swirl ( in (f)) in the whole space, as the flux constant tends to , 1) ; ; 2) converges to a vortex cylinder (see...
— Vengono riconsiderati il problema di derivata obliqua regolare e quello misto di Dirichlet-derivata obliqua regolare per le funzioni armoniche in un dominio di e le questioni di completezza hilbertiana connesse già studiate in un precedente lavoro e viene data una nuova dimostrazione di un teorema di unicità.
Let be an open set in and be a subset of . We characterize those pairs which permit the extension of superharmonic functions from to , or the approximation of functions on by harmonic functions on .