Page 1 Next

Displaying 1 – 20 of 49

Showing per page

Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains.

Martin Dindos, Marius Mitrea (2002)

Publicacions Matemàtiques

Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type Δu - N(x,u) = F(x), equipped with Dirichlet and Neumann boundary conditions.

Sets of determination for parabolic functions on a half-space

Jarmila Ranošová (1994)

Commentationes Mathematicae Universitatis Carolinae

We characterize all subsets M of n × + such that sup X n × + u ( X ) = sup X M u ( X ) for every bounded parabolic function u on n × + . The closely related problem of representing functions as sums of Weierstrass kernels corresponding to points of M is also considered. The results provide a parabolic counterpart to results for classical harmonic functions in a ball, see References. As a by-product the question of representability of probability continuous distributions as sums of multiples of normal distributions is investigated.

Sets of determination for solutions of the Helmholtz equation

Jarmila Ranošová (1997)

Commentationes Mathematicae Universitatis Carolinae

Let α > 0 , λ = ( 2 α ) - 1 / 2 , S n - 1 be the ( n - 1 ) -dimensional unit sphere, σ be the surface measure on S n - 1 and h ( x ) = S n - 1 e λ x , y d σ ( y ) . We characterize all subsets M of n such that inf x n u ( x ) h ( x ) = inf x M u ( x ) h ( x ) for every positive solution u of the Helmholtz equation on n . A closely related problem of representing functions of L 1 ( S n - 1 ) as sums of blocks of the form e λ x k , . / h ( x k ) corresponding to points of M is also considered. The results provide a counterpart to results for classical harmonic functions in a ball, and for parabolic functions on a slab, see References.

Sharp Weak-Type Inequality for the Haar System, Harmonic Functions and Martingales

Adam Osękowski (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Let ( h k ) k 0 be the Haar system on [0,1]. We show that for any vectors a k from a separable Hilbert space and any ε k [ - 1 , 1 ] , k = 0,1,2,..., we have the sharp inequality | | k = 0 n ε k a k h k | | W ( [ 0 , 1 ] ) 2 | | k = 0 n a k h k | | L ( [ 0 , 1 ] ) , n = 0,1,2,..., where W([0,1]) is the weak- L space introduced by Bennett, DeVore and Sharpley. The above estimate is generalized to the sharp weak-type bound | | Y | | W ( Ω ) 2 | | X | | L ( Ω ) , where X and Y stand for -valued martingales such that Y is differentially subordinate to X. An application to harmonic functions on Euclidean domains is presented.

Smale's Conjecture on Mean Values of Polynomials and Electrostatics

Dimitrov, Dimitar (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 30C10, 30C15, 31B35.A challenging conjecture of Stephen Smale on geometry of polynomials is under discussion. We consider an interpretation which turns out to be an interesting problem on equilibrium of an electrostatic field that obeys the law of the logarithmic potential. This interplay allows us to study the quantities that appear in Smale’s conjecture for polynomials whose zeros belong to certain specific regions. A conjecture concerning the electrostatic equilibrium...

Smooth potentials with prescribed boundary behaviour.

Stephen J. Gardiner, Anders Gustafsson (2004)

Publicacions Matemàtiques

This paper examines when it is possible to find a smooth potential on a C1 domain D with prescribed normal derivatives at the boundary. It is shown that this is always possible when D is a Liapunov-Dini domain, and this restriction on D is essential. An application concerning C1 superharmonic extension is given.

Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces

Takao Ohno, Tetsu Shimomura (2014)

Czechoslovak Mathematical Journal

Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator on grand Morrey spaces of variable exponents over non-doubling measure spaces. As an application of the boundedness of the maximal operator, we establish Sobolev's inequality for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. We are also concerned with Trudinger's inequality and the continuity for Riesz potentials.

Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces

Yoshihiro Mizuta, Tetsu Shimomura (2023)

Czechoslovak Mathematical Journal

Our aim is to establish Sobolev type inequalities for fractional maximal functions M , ν f and Riesz potentials I , α f in weighted Morrey spaces of variable exponent on the half space . We also obtain Sobolev type inequalities for a C 1 function on . As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents Φ ( x , t ) = t p ( x ) + ( b ( x ) t ) q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions, p ( x ) < q ( x ) for x , and b ( · ) is nonnegative and Hölder continuous of order θ ( 0 , 1 ] .

Solution of the Dirichlet problem for the Laplace equation

Dagmar Medková (1999)

Applications of Mathematics

For open sets with a piecewise smooth boundary it is shown that a solution of the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of the single layer potential and the double layer potential with the same density, where this density is given by a concrete series.

Solution of the Neumann problem for the Laplace equation

Dagmar Medková (1998)

Czechoslovak Mathematical Journal

For fairly general open sets it is shown that we can express a solution of the Neumann problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series. If the open set is simply connected and bounded then the solution of the Dirichlet problem is the double layer potential with a density given by a similar series.

Solution of the Robin problem for the Laplace equation

Dagmar Medková (1998)

Applications of Mathematics

For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series.

Solutions positives et mesure harmonique pour des opérateurs paraboliques dans des ouverts «lipschitziens»

Yanick Heurteaux (1991)

Annales de l'institut Fourier

Soit L un opérateur parabolique sur R n + 1 écrit sous forme divergence et à coefficients lipschitziens relativement à une métrique adaptée. Nous cherchons à comparer près de la frontière le comportement relatif des L -solutions positives sur un domaine “lipschitzien”. Dans un premier temps, nous démontrons un principe de Harnack uniforme pour certaines L -solutions positives. Ce principe nous permet alors de démontrer une inégalité de Harnack forte à la frontière pour certains couples de L -solutions positives....

Solving Fractional Diffusion-Wave Equations Using a New Iterative Method

Daftardar-Gejji, Varsha, Bhalekar, Sachin (2008)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 31B10In the present paper a New Iterative Method [1] has been employed to find solutions of linear and non-linear fractional diffusion-wave equations. Illustrative examples are solved to demonstrate the efficiency of the method.* This work has partially been supported by the grant F. No. 31-82/2005(SR) from the University Grants Commission, N. Delhi, India.

Some characterizations of harmonic Bloch and Besov spaces

Xi Fu, Bowen Lu (2016)

Czechoslovak Mathematical Journal

The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic ω - α -Bloch space and characterize it in terms of ω ( ( 1 - | x | 2 ) β ( 1 - | y | 2 ) α - β ) | f ( x ) - f ( y ) x - y | and ω ( ( 1 - | x | 2 ) β ( 1 - | y | 2 ) α - β ) | f ( x ) - f ( y ) | x | y - x ' | where ω is a majorant. Similar results are extended to harmonic little ω - α -Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G. Ren, U. Kähler (2005).

Some constructions of biharmonic maps on the warped product manifolds

Abdelmadjid Bennouar, Seddik Ouakkas (2017)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we characterize a class of biharmonic maps from and between product manifolds in terms of the warping function. Examples are constructed when one of the factors is either Euclidean space or sphere.

Currently displaying 1 – 20 of 49

Page 1 Next