Fonction de Green pluriclomplexe à pole à l'infini sur un espace de Stein parabolique et applications.
We prove that any positive function on ℂℙ¹ which is constant outside a countable -set is the order function of a fundamental solution of the complex Monge-Ampère equation on the unit ball in ℂ² with a singularity at the origin.
The mutual singularity problem for measures with restrictions on the spectrum is studied. The -pluriharmonic Riesz product construction on the complex sphere is introduced. Singular pluriharmonic measures supported by sets of maximal Hausdorff dimension are obtained.
We point out relations between Siciak’s homogeneous extremal function and the Cauchy-Poisson transform in case is a ball in ℝ². In particular, we find effective formulas for for an important class of balls. These formulas imply that, in general, is not a norm in ℂ².
The purpose of this paper is to present a concise survey of the main properties of biholomorphically invariant pluricomplex Green functions and to describe a number of new examples of such functions. A concept of pluricomplex geodesics is also discussed.
A compact set satisfies Łojasiewicz-Siciak condition if it is polynomially convex and there exist constants B,β > 0 such that if dist(z,K) ≤ 1. (LS) Here denotes the pluricomplex Green function of the set K. We cite theorems where this condition is necessary in the assumptions and list known facts about sets satisfying inequality (LS).
The main result of this paper is the following: if a compact subset E of is UPC in the direction of a vector then E has the Markov property in the direction of v. We present a method which permits us to generalize as well as to improve an earlier result of Pawłucki and Pleśniak [PP1].
Consider the normed space of all polynomials of N complex variables, where || || a norm is such that the mapping is continuous, with g being a fixed polynomial. It is shown that the Markov type inequality , j = 1,...,N, , with positive constants M and m is equivalent to the inequality , , with some positive constants M’ and m’. A similar equivalence result is obtained for derivatives of a fixed order k ≥ 2, which can be more specifically formulated in the language of normed algebras. In...
We study two known theorems regarding Hermitian matrices: Bellman's principle and Hadamard's theorem. Then we apply them to problems for the complex Monge-Ampère operator. We use Bellman's principle and the theory for plurisubharmonic functions of finite energy to prove a version of subadditivity for the complex Monge-Ampère operator. Then we show how Hadamard's theorem can be extended to polyradial plurisubharmonic functions.
Soit un compact polynomialement convexe de et son “potentiel logarithmique extrémal” dans . Supposons que est régulier (i.e. continue) et soit une fonction holomorphe sur un voisinage de . On construit alors une suite de polynôme de variables complexes avec deg pour , telle que l’erreur d’approximation soit contrôlée de façon assez précise en fonction du “pseudorayon de convergence” de par rapport à et du degré de convergence . Ce résultat est ensuite utilisé pour étendre...