Sums of Continuous Plurisubharmonic Functions and the Complex Monge-Ampère Operator in ....n.
0. Introduction. Nous donnons ici une étude systématique des systèmes doublement orthogonaux "de Bergman" et leurs applications à certains aspects de l'analyse pluricomplexe: espaces de fonctions holomorphes, fonctions séparément analytiques. C'est en quelque sorte un article de synthèse. On y trouve cependant des démonstrations détaillées qui n'ont paru nulle part ailleurs.
Let be a submanifold of a manifold . We address the question: When do viscosity subsolutions of a fully nonlinear PDE on , restrict to be viscosity subsolutions of the restricted subequation on ? This is not always true, and conditions are required. We first prove a basic result which, in theory, can be applied to any subequation. Then two definitive results are obtained. The first applies to any “geometrically defined” subequation, and the second to any subequation which can be transformed...
Hörmander has characterized the surjective constant coefficient partial differential operators on the space of all real analytic functions on by a Phragmén-Lindelöf condition. Geometric implications of this condition and, for homogeneous operators, of the corresponding condition for Gevrey classes are given.
On définit sur un espace vectoriel une classe de topologies qui rendent la multiplication continue, mais ne sont pas vectorielles en général. Sur un espace complexe elles permettent d’obtenir encore les principales propriétés des fonctions plurisousharmoniques. De telles topologies séparées sont localement pseudo-convexes (mais non localement convexes en général) : cette notion intervient dans les extensions données récemment par l’auteur du théorème de Banach-Steinhaus aux familles de polynômes...
We investigate the class of functions associated with the complex Hessian equation .