Poisson kernel characterization of Reifenberg flat chord arc domains
In this paper, we give a sharp estimate on the dimension of the space of polynomial growth harmonic functions with fixed degree on a complete Riemannian manifold, under various assumptions.
We study Toeplitz operators between the pluriharmonic Bergman spaces for positive symbols on the ball. We give characterizations of bounded and compact Toeplitz operators taking a pluriharmonic Bergman space into another for in terms of certain Carleson and vanishing Carleson measures.
We introduce potential spaces on fractal metric spaces, investigate their embedding theorems, and derive various Besov spaces. Our starting point is that there exists a local, stochastically complete heat kernel satisfying a two-sided estimate on the fractal considered.
We aim here at analyzing the fundamental properties of positive semidefinite Schrödinger operators on networks. We show that such operators correspond to perturbations of the combinatorial Laplacian through 0-order terms that can be totally negative on a proper subset of the network. In addition, we prove that these discrete operators have analogous properties to the ones of elliptic second order operators on Riemannian manifolds, namely the monotonicity, the minimum principle, the variational treatment...
Expected suprema of a function f observed along the paths of a nice Markov process define an excessive function, and in fact a potential if f vanishes at the boundary. Conversely, we show under mild regularity conditions that any potential admits a representation in terms of expected suprema. Moreover, we identify the maximal and the minimal representing function in terms of probabilistic potential theory. Our results are motivated by the work of El Karoui and Meziou (2006) on the max-plus decomposition...
For μ a positive measure, we estimate the pluricomplex potential of μ, , where g(x,y) is the pluricomplex Green function (relative to Ω) with pole at y.
Dans ce travail, on s’est posé le problème suivant : étant donné un cône convexe de fonction s.c.i. sur localement compact, à quelles conditions est-il le cône des fonctions surharmoniques dans pour une certaine théorie locale du potentiel, à construire effectivement à partir de ? On montre que si est maximal (dans l’ensemble des cônes de fonctions vérifiant un principe du minimum), séparant et contient assez de fonctions continues, on peut construire un faisceau de cônes de fonctions...
On considère le noyau de Poisson du processus -stable symétrique pour un domaine conique. Puis on considère le problème d’intégrabilité du noyau de Poisson à la puissance . On donne des conditions sur pour qu’il existe une solution au problème de Dirichlet pour les fonctions -harmoniques sur les domaines coniques, avec une condition au bord donnée par une fonction de .
Dans la première partie du travail, l’auteur étudie les fonctions harmoniques associées à un processus en cascade sans disparition d’individus. Il achève la caractérisation des fonctions harmoniques positives extrémales, entreprise dans deux articles précédents et il détermine le comportement asymptotique de celles-ci. Un certain nombre d’exemples de fonctions harmoniques sont décrits. La deuxième partie du travail porte sur les fonctions harmoniques positives qui sont des fonctionnelles linéaires...