On a boundary version of Morera's theorem.
It is shown that on strongly pseudoconvex domains the Bergman projection maps a space of functions growing near the boundary like some power of the Bergman distance from a fixed point into a space of functions which can be estimated by the consecutive power of the Bergman distance. This property has a local character. Let Ω be a bounded, pseudoconvex set with C³ boundary. We show that if the Bergman projection is continuous on a space defined by weighted-sup seminorms and equipped with the topology...
In this review article we present the problem of studying Hardy spaces and the related Szeg˝o projection on worm domains. We review the importance of the Diederich–Fornæss worm domain as a smooth bounded pseudoconvex domain whose Bergman projection does not preserve Sobolev spaces of sufficiently high order and we highlight which difficulties arise in studying the same problem for the Szeg˝o projection. Finally, we announce and discuss the results we have obtained so far in the setting of non-smooth...
We construct a sequence of homogeneous polynomials on the unit ball in which are big at each point of the unit sphere . As an application we construct a holomorphic function on which is not integrable with any power on the intersection of with any complex subspace.
We prove that continuity properties of bounded analytic functions in bounded smoothly bounded pseudoconvex domains in two-dimensional affine space are determined by their behaviour near the Shilov boundary. Namely, if the function has continuous extension to an open subset of the boundary containing the Shilov boundary it extends continuously to the whole boundary. If it is e.g. Hölder continuous on such a boundary set, it is Hölder continuous on the closure of the domain. The statements may fail...
The well known theorem of Rogosinski asserts that if the modulus of the sum of a power series is less than 1 in the open unit disk: , |z| < 1, then all its partial sums are less than 1 in the disk of radius 1/2: , |z| < 1/2, and this radius is sharp. We present a generalization of this theorem to holomorphic mappings of the open unit ball into an arbitrary convex domain. Other multidimensional analogs of Rogosinski’s theorem as well as some applications to dynamical systems are considered....