Page 1

Displaying 1 – 8 of 8

Showing per page

On gradients of functions definable in o-minimal structures

Krzysztof Kurdyka (1998)

Annales de l'institut Fourier

We prove the o-minimal generalization of the Łojasiewicz inequality grad f | f | α , with α < 1 , in a neighborhood of a , where f is real analytic at a and f ( a ) = 0 . We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.

On some noetherian rings of C germs on a real closed field

Abdelhafed Elkhadiri (2011)

Annales Polonici Mathematici

Let R be a real closed field, and denote by R , n the ring of germs, at the origin of Rⁿ, of C functions in a neighborhood of 0 ∈ Rⁿ. For each n ∈ ℕ, we construct a quasianalytic subring R , n R , n with some natural properties. We prove that, for each n ∈ ℕ, R , n is a noetherian ring and if R = ℝ (the field of real numbers), then , n = , where ₙ is the ring of germs, at the origin of ℝⁿ, of real analytic functions. Finally, we prove the Real Nullstellensatz and solve Hilbert’s 17th Problem for the ring R , n .

On the rings of formal solutions of polynomial differential equations

Maria-Angeles Zurro (1998)

Banach Center Publications

The paper establishes the basic algebraic theory for the Gevrey rings. We prove the Hensel lemma, the Artin approximation theorem and the Weierstrass-Hironaka division theorem for them. We introduce a family of norms and we look at them as a family of analytic functions defined on some semialgebraic sets. This allows us to study the analytic and algebraic properties of this rings.

Currently displaying 1 – 8 of 8

Page 1