On analytic models of synthetic differential geometry
We prove the o-minimal generalization of the Łojasiewicz inequality , with , in a neighborhood of , where is real analytic at and . We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.
Let R be a real closed field, and denote by the ring of germs, at the origin of Rⁿ, of functions in a neighborhood of 0 ∈ Rⁿ. For each n ∈ ℕ, we construct a quasianalytic subring with some natural properties. We prove that, for each n ∈ ℕ, is a noetherian ring and if R = ℝ (the field of real numbers), then , where ₙ is the ring of germs, at the origin of ℝⁿ, of real analytic functions. Finally, we prove the Real Nullstellensatz and solve Hilbert’s 17th Problem for the ring .
The paper establishes the basic algebraic theory for the Gevrey rings. We prove the Hensel lemma, the Artin approximation theorem and the Weierstrass-Hironaka division theorem for them. We introduce a family of norms and we look at them as a family of analytic functions defined on some semialgebraic sets. This allows us to study the analytic and algebraic properties of this rings.