Semianalytic and subanalytic sets
On démontre que toute solution formelle d’un système d’équations analytiques réelles (resp. polynomiales réelles) , se relève en une solution homotope à une solution analytique (resp. à une solution de Nash) aussi proche que l’on veut de pour la topologie de Krull. On utilise ce théorème pour démontrer l’algébricité (ou l’analyticité) de certains idéaux de (ou ), et aussi pour construire des déformations analytiques de germes d’ensembles analytiques en germes d’ensembles de Nash.
We study the effect of changing the residue field, on the topological properties of local algebra homomorphisms of analytic algebras (quotients of convergent power series rings). Although injectivity is not preserved, openness and closedness in the Krull topology, simple topology, and inductive topology is preserved.
Let (U) denote the algebra of holomorphic functions on an open subset U ⊂ ℂⁿ and Z ⊂ (U) its finite-dimensional vector subspace. By the theory of least spaces of de Boor and Ron, there exists a projection from the local ring onto the space of germs of elements of Z at b. At a general point b ∈ U its kernel is an ideal and induces the structure of an Artinian algebra on . In particular, this holds at points where the kth jets of elements of Z form a vector bundle for each k ∈ ℕ. For an embedded...
We generalize to some classes of ultradifferentiable jets or functions the classical Łojasiewicz Division Theorem and Glaeser Composition Theorem. The proof uses the desingularization results by Hironaka, Bierstone and Milman.
Une construction explicite et élémentaire de l’homomorphisme trace pour les applications analytiques locales de type fini entre des espaces normaux est donnée. On généralise le théorème de dualité locale dans le cas où l’anneau local à la source est un anneau de factorisation unique. Des exemples et des applications sont donnés.
We prove a Weierstrass division formula for Whitney jets ∂̅-flat on arbitrary compact subsets of the complex plane. We also give results for Carleman classes.
We discuss some local analytic properties of the ring of Dirichlet series. We obtain mainly the equivalence between the irreducibility in the analytic ring and in the formal one. In the same way we prove that the ring of analytic Dirichlet series is integrally closed in the ring of formal Dirichlet series. Finally we introduce the notion of standard basis in these rings and we give a finitely generated ideal which does not admit standard bases.