Quadratic Forms and Holomorphic Foliations on Singular Surfaces.
The paper is a continuation of an earlier one where we developed a theory of active and non-active infinitesimals and intended to establish quantifier elimination in quasianalytic structures. That article, however, did not attain full generality, which refers to one of its results, namely the theorem on an active infinitesimal, playing an essential role in our non-standard analysis. The general case was covered in our subsequent preprint, which constitutes a basis for the approach presented here....
This paper investigates the geometry of the expansion of the real field ℝ by restricted quasianalytic functions. The main purpose is to establish quantifier elimination, description of definable functions by terms, the valuation property and preparation theorem (in the sense of Parusiński-Lion-Rolin). To this end, we study non-standard models of the universal diagram T of in the language ℒ augmented by the names of rational powers. Our approach makes no appeal to the Weierstrass preparation...
This paper investigates hyperbolic polynomials with quasianalytic coefficients. Our main purpose is to prove factorization theorems for such polynomials, and next to generalize the results of K. Kurdyka and L. Paunescu about perturbation of analytic families of symmetric matrices to the quasianalytic setting.