Semianalytic and subanalytic sets
A coordinate cone in is an intersection of some coordinate hyperplanes and open coordinate half-spaces. A semi-monotone set is an open bounded subset of , definable in an o-minimal structure over the reals, such that its intersection with any translation of any coordinate cone is connected. This notion can be viewed as a generalization of convexity. Semi-monotone sets have a number of interesting geometric and combinatorial properties. The main result of the paper is that every semi-monotone...
Let be an open neighborhood of the origin in and let be complex analytic. Let be a generic linear form on . If the relative polar curve at the origin is irreducible and the intersection number is prime, then there are severe restrictions on the possible degree cohomology of the Milnor fiber at the origin. We also obtain some interesting, weaker, results when is not prime.
The Siciak extremal function establishes an important link between polynomial approximation in several variables and pluripotential theory. This yields its numerous applications in complex and real analysis. Some of them can be found on a rich list drawn up by Klimek in his well-known monograph "Pluripotential Theory". The purpose of this paper is to supplement it by applications in constructive function theory.
On démontre que toute solution formelle d’un système d’équations analytiques réelles (resp. polynomiales réelles) , se relève en une solution homotope à une solution analytique (resp. à une solution de Nash) aussi proche que l’on veut de pour la topologie de Krull. On utilise ce théorème pour démontrer l’algébricité (ou l’analyticité) de certains idéaux de (ou ), et aussi pour construire des déformations analytiques de germes d’ensembles analytiques en germes d’ensembles de Nash.
We study the effect of changing the residue field, on the topological properties of local algebra homomorphisms of analytic algebras (quotients of convergent power series rings). Although injectivity is not preserved, openness and closedness in the Krull topology, simple topology, and inductive topology is preserved.
Let (U) denote the algebra of holomorphic functions on an open subset U ⊂ ℂⁿ and Z ⊂ (U) its finite-dimensional vector subspace. By the theory of least spaces of de Boor and Ron, there exists a projection from the local ring onto the space of germs of elements of Z at b. At a general point b ∈ U its kernel is an ideal and induces the structure of an Artinian algebra on . In particular, this holds at points where the kth jets of elements of Z form a vector bundle for each k ∈ ℕ. For an embedded...
The spectrum of the Laplace operator on algebraic and semialgebraic subsets in is studied and the number of small eigenvalues is estimated by the degree of .
A stratified form is a collection of forms defined on the strata of a stratification of a subanalytic set and satisfying a continuity property when we pass from one stratum to another. We prove that these forms satisfy Stokes' formula on subanalytic singular simplices.
A first part of a systematic presentation of Pfaffian geometry is given.