Calculus inequalities derived from holomorphic Morse inequalities.
Let F be the Cartesian product of N closed sets in ℂ. We prove that there exists a function g which is continuous on F and holomorphic on the interior of F such that is complete pluripolar in . Using this result, we show that if D is an analytic polyhedron then there exists a bounded holomorphic function g such that is complete pluripolar in . These results are high-dimensional analogs of the previous ones due to Edlund [Complete pluripolar curves and graphs, Ann. Polon. Math. 84 (2004), 75-86]...