Eine geometrische Eigenschaft von Rungeschen Gebieten.
We present here three examples concerning polynomial hulls of some manifolds in C2.1. Some real surfaces with equation w = P (z,z') + G(z) where P is a homogeneous polynomial of degree n and G(z) = o(|z|n) at 0 which are locally polynomially convex at 0.2. Some real surfaces MF with equation w = zn+kz'n + F(z,z') such that the hull of Mf ∩ B'(0,1) contains a neighbourhood of 0.3. A contable union of totally real planes (Pj) such that B'(0,1) ∩ (∪j∈N Pj) is polynomially convex.
En reprenant le travail de Weinstock concernant l’union de deux sous-espaces, nous montrons que peut être obtenu comme l’union d’un nombre fini de sous-espaces vectoriels totalement réels maximaux, pour tout supérieur à un. Ceci contraste avec le cas des droites complexes de , dont il faut un ensemble de capacité positive pour que l’enveloppe soit tout l’espace. On étudie aussi le cas des trois plans réels de : si les trois unions deux à deux ne sont pas polynomialement convexes, alors l’enveloppe...