Displaying 41 – 60 of 132

Showing per page

Disks extremal with respect to interpolation constants.

Nguyen Van Trao (2000)

Publicacions Matemàtiques

We define a function μ from the set of sequences in the unit ball to R*+ by taking the greatest lower bound of the reciprocal of the interpolating constant of the sequences of the disk which get mapped to the given sequence by a holomorphic mapping from the disk to the ball. Its properties are studied in the spirit of the work of Amar and Thomas.

Extending holomorphic mappings from subvarieties in Stein manifolds

Franc Forstneric (2005)

Annales de l’institut Fourier

Suppose that Y is a complex manifold such that any holomorphic map from a compact convex set in a Euclidean space n to Y is a uniform limit of entire maps n Y . We prove that a holomorphic map X 0 Y from a closed complex subvariety X 0 in a Stein manifold X admits a holomorphic extension X Y provided that it admits a continuous extension. We then establish the equivalence of four Oka-type properties of a complex manifold.

Extending holomorphic maps in infinite dimensions

Bui Dac Tac (1991)

Annales Polonici Mathematici

Studying the sequential completeness of the space of germs of Banach-valued holomorphic functions at a points of a metric vector space some theorems on extension of holomorphic maps on Riemann domains over topological vector spaces with values in some locally convex analytic spaces are proved. Moreover, the extendability of holomorphic maps with values in complete C-spaces to the envelope of holomorphy for the class of bounded holomorphic functions is also established. These results are known in...

Holomorphic submersions from Stein manifolds

Franc Forstnerič (2004)

Annales de l’institut Fourier

We establish the homotopy classification of holomorphic submersions from Stein manifolds to Complex manifolds satisfying an analytic property introduced in the paper. The result is a holomorphic analogue of the Gromov--Phillips theorem on smooth submersions.

Internal characteristics of domains in ℂⁿ

Vyacheslav Zakharyuta (2014)

Annales Polonici Mathematici

This paper is devoted to internal capacity characteristics of a domain D ⊂ ℂⁿ, relative to a point a ∈ D, which have their origin in the notion of the conformal radius of a simply connected plane domain relative to a point. Our main goal is to study the internal Chebyshev constants and transfinite diameters for a domain D ⊂ ℂⁿ and its boundary ∂D relative to a point a ∈ D in the spirit of the author's article [Math. USSR-Sb. 25 (1975), 350-364], where similar characteristics have been investigated...

Currently displaying 41 – 60 of 132