Displaying 81 – 100 of 132

Showing per page

Polynomial interpolation and approximation in d

T. Bloom, L. P. Bos, J.-P. Calvi, N. Levenberg (2012)

Annales Polonici Mathematici

We update the state of the subject approximately 20 years after the publication of T. Bloom, L. Bos, C. Christensen, and N. Levenberg, Polynomial interpolation of holomorphic functions in ℂ and ℂⁿ, Rocky Mountain J. Math. 22 (1992), 441-470. This report is mostly a survey, with a sprinkling of assorted new results throughout.

Riemann surfaces in Stein manifolds with the Density property

Rafael B. Andrist, Erlend Fornæss Wold (2014)

Annales de l’institut Fourier

We show that any open Riemann surface can be properly immersed in any Stein manifold with the (Volume) Density property and of dimension at least 2. If the dimension is at least 3, we can actually choose this immersion to be an embedding. As an application, we show that Stein manifolds with the (Volume) Density property and of dimension at least 3, are characterized among all other complex manifolds by their semigroup of holomorphic endomorphisms.

Runge families and inductive limits of Stein spaces

Andrew Markoe (1977)

Annales de l'institut Fourier

The general Stein union problem is solved: given an increasing sequence of Stein open sets, it is shown that the union X is Stein if and only if H 1 ( X , O X ) is Hausdorff separated.

Siciak's extremal function in complex and real analysis

W. Pleśniak (2003)

Annales Polonici Mathematici

The Siciak extremal function establishes an important link between polynomial approximation in several variables and pluripotential theory. This yields its numerous applications in complex and real analysis. Some of them can be found on a rich list drawn up by Klimek in his well-known monograph "Pluripotential Theory". The purpose of this paper is to supplement it by applications in constructive function theory.

Currently displaying 81 – 100 of 132