Levi-Curvature of Manifolds with a Stein Rational Fibration.
We investigate some aspects of maximum modulus sets in the boundary of a strictly pseudoconvex domain of dimension . If is a smooth manifold of dimension and a maximum modulus set, then it admits a unique foliation by compact interpolation manifolds. There is a semiglobal converse in the real analytic case. Two functions in with the same smooth -dimensional maximum modulus set are analytically related and are polynomially related if a certain homology class in vanishes or if is polynomially...
Soit un compact polynomialement convexe de et son “potentiel logarithmique extrémal” dans . Supposons que est régulier (i.e. continue) et soit une fonction holomorphe sur un voisinage de . On construit alors une suite de polynôme de variables complexes avec deg pour , telle que l’erreur d’approximation soit contrôlée de façon assez précise en fonction du “pseudorayon de convergence” de par rapport à et du degré de convergence . Ce résultat est ensuite utilisé pour étendre...
We give a state-of-the-art survey of investigations concerning multivariate polynomial inequalities. A satisfactory theory of such inequalities has been developed due to applications of both the Gabrielov-Hironaka-Łojasiewicz subanalytic geometry and pluripotential methods based on the complex Monge-Ampère operator. Such an approach permits one to study various inequalities for polynomials restricted not only to nice (nonpluripolar) compact subsets of ℝⁿ or ℂⁿ but also their versions for pieces...
Oka theory has its roots in the classical Oka-Grauert principle whose main result is Grauert’s classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomorphic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989.In this expository paper we discuss Oka manifolds and Oka maps. We describe equivalent characterizations...
Let be a solvable complex Lie group and a closed complex subgroup of . If the global holomorphic functions of the complex manifold locally separate points on , then is a Stein manifold. Moreover there is a subgroup of finite index in with nilpotent. In special situations (e.g. if is discrete) normalizes and is abelian.