Line bundles on toroidal groups.
If the monodromy representation of a VHS over a hyperbolic curve stabilizes a rank two subspace, there is a single non-negative Lyapunov exponent associated with it. We derive an explicit formula using only the representation in the case when the monodromy is discrete.
We give a Hodge-theoretic parametrization of certain real Lie group orbits in the compact dual of a Mumford-Tate domain, and characterize the orbits which contain a naive limit Hodge filtration. A series of examples are worked out for the groups , , and .