Displaying 401 – 420 of 538

Showing per page

Strict uniformization of real algebraic curves and global real analytic coordinates on real Teichmüller spaces.

J. Huisman (1999)

Revista Matemática Complutense

We construct a global system of real analytic coordinates on the real Teichmüller space of a compact real algebraic curve X, using so-called strict uniformization of the real algebraic curve X. A global coordinate system is then obtained via real quasiconformal deformations of the Kleinian subgroup of PGL2(R) obtained as a group of covering transformations of a strict uniformization of X.

Sur les représentations de Krammer génériques

Ivan Marin (2007)

Annales de l’institut Fourier

Nous définissons une représentation des groupes d’Artin de type A D E par monodromie de systèmes KZ généralisés, dont nous montrons qu’elle est isomorphe à la représentation de Krammer généralisée définie originellement par A.M.Cohen et D.Wales, et indépendamment par F.Digne. Cela implique que tous les groupes d’Artin purs de type sphérique sont résiduellement nilpotents-sans-torsion, donc (bi-)ordonnables. En utilisant cette construction nous montrons que ces représentations irréductibles sont Zariski-denses...

Symplectic Representation of a Braid Group on 3-Sheeted Covers of the Riemann Sphere

Rolf-Peter, Holzapfel (1997)

Serdica Mathematical Journal

We define Picard cycles on each smooth three-sheeted Galois cover C of the Riemann sphere. The moduli space of all these algebraic curves is a nice Shimura surface, namely a symmetric quotient of the projective plane uniformized by the complex two-dimensional unit ball. We show that all Picard cycles on C form a simple orbit of the Picard modular group of Eisenstein numbers. The proof uses a special surface classification in connection with the uniformization of a classical Picard-Fuchs system....

Currently displaying 401 – 420 of 538