Darstellbarkeitskriterien für analytische Funktoren
We show the uniqueness of local and global decompositions of abstract CR-manifolds into direct products of irreducible factors, and a splitting property for their CR-diffeomorphisms into direct products with respect to these decompositions. The assumptions on the manifolds are finite non-degeneracy and finite-type on a dense subset. In the real-analytic case, these are the standard assumptions that appear in many other questions. In the smooth case, the assumptions cannot be weakened by replacing...
Let Y be a Riemann surface with compact boundary embedded into a hyperbolic Riemann surface of finite type X. It is proved that the space of deformations D of Y into X is an open subset of the Teichmüller space T(X) of X. Furthermore, D has compact closure if and only if Y is simply connected or isomorphic to a punctured disk, and D= T(X) if and only if the components of X Y are all disks or punctured disks.
Let F be a transversely holomorphic foliation on a compact manifold. We show the existence of a versal space for those deformations of F which keep fixed its differentiable type if F is Hermitian or if F has complex codimension one and admits a transverse projectable connection. We also prove the existence of a versal space of deformations for the complex structures on a Lie group invariant by a cocompact subgroup.