Factorization of rank two theta functions. II. Proof of the Verlinde formula.
On généralise dans cet article la notion de filtration de Harder-Narasimhan au cas des fibrés complexes sur une variété presque complexe compacte d'une part, et au cas des faisceaux cohérents sans torsion sur une variété holomorphe d'autre part. On démontre, dans les deux cas, l'existence d'un déstabilisant maximal. On obtient un théorème de convergence en famille et par là-même l'ouverture de la stabilité en déformation.
We show that for each genus there are only finitely many algebraically primitive Teichmüller curves , such that (i) lies in the hyperelliptic locus and (ii) is generated by an abelian differential with two zeros of order . We prove moreover that for these Teichmüller curves the trace field of the affine group is not only totally real but cyclotomic.
Consider the following uniformization problem. Take two holomorphic (parametrized by some analytic set defined on a neighborhood of in , for some ) or differentiable (parametrized by an open neighborhood of in , for some ) deformation families of compact complex manifolds. Assume they are pointwise isomorphic, that is for each point of the parameter space, the fiber over of the first family is biholomorphic to the fiber over of the second family. Then, under which conditions are the...