Regularity of the tangential Cauchy-Riemann complex and applications
We prove the existence of stationary discs in the ball for small almost complex deformations of the standard structure. We define a local analogue of the Riemann map and establish its main properties. These constructions are applied to study the local geometry of almost complex manifolds and their morphisms.
We show that any open Riemann surface can be properly immersed in any Stein manifold with the (Volume) Density property and of dimension at least 2. If the dimension is at least 3, we can actually choose this immersion to be an embedding. As an application, we show that Stein manifolds with the (Volume) Density property and of dimension at least 3, are characterized among all other complex manifolds by their semigroup of holomorphic endomorphisms.