The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Oka theory has its roots in the classical Oka-Grauert principle whose main result is Grauert’s classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomorphic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989.In this expository paper we discuss Oka manifolds and Oka maps. We describe equivalent characterizations...
A complex analytic space is said to have the D*-extension property if and only if any holomorphic map from the punctured disk to the given space extends to a holomorphic map from the whole disk to the same space. A Hartogs domain H over the base X (a complex space) is a subset of X x C where all the fibers over X are disks centered at the origin, possibly of infinite radius. Denote by φ the function giving the logarithm of the reciprocal of the radius of the fibers, so that, when X is pseudoconvex,...
We study the extension problem of holomorphic maps of a Hartogs domain
with values in a complex manifold . For compact Kähler manifolds as well as
various non-Kähler manifolds, the maximal domain of extension for
over is contained in a subdomain of . For such manifolds, we
define, in this paper, an invariant Hex using the Hausdorff dimensions of the
singular sets of ’s and study its properties to deduce informations on the
complex structure of .
Given a compact connected Lie group . For a relatively compact -invariant domain in a Stein -homogeneous space, we prove that the automorphism group of is compact and if is semisimple, a proper holomorphic self mapping of is biholomorphic.
We continue E. Ligocka's investigations concerning the existence of m-valent locally biholomorphic mappings from multi-connected onto simply connected domains. We decrease the constant m, and also give the minimum of m in the case of mappings from a wide class of domains onto the complex plane ℂ.
We prove that each open Riemann surface can be locally biholomorphically (locally univalently) mapped onto the whole complex plane. We also study finite-to-one locally biholomorphic mappings onto the unit disc. Finally, we investigate surjective biholomorphic mappings from Cartesian products of domains.
We survey some recent results on holomorphic or formal mappings sending real submanifolds in complex space into each other. More specifically, the approximation and convergence properties of formal CR-mappings between real-analytic CR-submanifolds will be discussed, as well as the corresponding questions in the category of real-algebraic CR-submanifolds.
In contrast with the integrable case there exist infinitely many non-integrable homogeneous almost complex manifolds which are strongly pseudoconvex at each boundary point. All such manifolds are equivalent to the Siegel half space endowed with some linear almost complex structure.We prove that there is no relatively compact strongly pseudoconvex representation of these manifolds. Finally we study the upper semi-continuity of the automorphism group of some hyperbolic strongly pseudoconvex almost...
Let Ω be the spectral unit ball of Mₙ(ℂ), that is, the set of n × n matrices with spectral radius less than 1. We are interested in classifying the automorphisms of Ω. We know that it is enough to consider the normalized automorphisms of Ω, that is, the automorphisms F satisfying F(0) = 0 and F'(0) = I, where I is the identity map on Mₙ(ℂ). The known normalized automorphisms are conjugations. Is every normalized automorphism a conjugation? We show that locally, in a neighborhood of a matrix with...
We give a simple algebraic condition on the leading homogeneous term of a polynomial mapping from ℝ² into ℝ² which is equivalent to the fact that the complexification of this mapping can be extended to a polynomial endomorphism of ℂℙ². We also prove that this extension acts on ℂℙ²∖ℂ² as a quotient of finite Blaschke products.
For large classes of complex Banach spaces (mainly operator spaces) we consider orbits of finite rank elements under the group of linear isometries. These are (in general) real-analytic submanifolds of infinite dimension but of finite CR-codimension. We compute the polynomial convex hull of such orbits explicitly and show as main result that every continuous CR-function on has a unique extension to the polynomial convex hull which is holomorphic in a certain sense. This generalizes to infinite...
We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric.
In this paper, we show that if and are algebraic real hypersurfaces in (possibly different) complex spaces of dimension at least two and if is a holomorphic mapping defined near a neighborhood of so that , then is also algebraic. Our proof is based on a careful analysis on the invariant varieties and reduces to the consideration of many cases. After a slight modification, the argument is also used to prove a reflection principle, which allows our main result to be stated for mappings...
We study the topological invariant ϕ of Kwieciński and Tworzewski, particularly beyond the case of mappings with smooth targets. We derive a lower bound for ϕ of a general mapping, which is similarly effective as the upper bound given by Kwieciński and Tworzewski. Some classes of mappings are identified for which the exact value of ϕ can be computed. Also, we prove that the variation of ϕ on the source space of a mapping with a smooth target is semicontinuous in the Zariski topology.
Currently displaying 1 –
17 of
17