Page 1

Displaying 1 – 9 of 9

Showing per page

Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity

Duc Quang Si, An Hai Tran (2020)

Mathematica Bohemica

This paper deals with the finiteness problem of meromorphic funtions on an annulus sharing four values regardless of multiplicity. We prove that if three admissible meromorphic functions f 1 , f 2 , f 3 on an annulus 𝔸 ( R 0 ) share four distinct values regardless of multiplicity and have the complete identity set of positive counting function, then f 1 = f 2 or f 2 = f 3 or f 3 = f 1 . This result deduces that there are at most two admissible meromorphic functions on an annulus sharing a value with multiplicity truncated to level 2 and...

Fonctions de type trace

Daniel Barlet (1983)

Annales de l'institut Fourier

Soit π : V W un morphisme propre fini et surjectif entre deux variétés analytiques complexes. Nous donnons une caractérisation des fonctions (continues) sur W qui sont de la forme π * f f est une fonction C sur V . Pour cela nous introduisons la notion de fonction de type trace sur une variété analytique complexe. Ces fonctions sont analytiques réelles en dehors d’une hypersurface complexe et admettent des singularités très simples aux points de cette hypersurface.

Formules de Jacobi et méthodes analytiques

Hai Zhang (2005)

Colloquium Mathematicae

On se propose de retrouver, via des méthodes d'inspiration analytiques basées sur l'utilisation de formules de représentation intégrale attachées à des applications holomorphes propres d'un ouvert de ℂⁿ dans ℂⁿ, les formules de Jacobi généralisées obtenues par C. A. Berenstein, A. Vidras et A. Yger; le fait de disposer de telles preuves (basées sur un raisonnement limité au cadre strictement affine et ne nécessitant pas le recours à une compactification) autorise l'extension de ces résultats au...

Formules explicites pour les solutions minimales de l’équation ¯ u = f dans la boule et dans le polydisque de n

Philippe Charpentier (1980)

Annales de l'institut Fourier

Dans cet article, on construit tout d’abord un noyau de Cauchy explicite dans la boule unité B de C n dont les valeurs au bord sont égales au noyau de Szegö. Puis, à partir de ce noyau, on construit explicitement les noyaux qui fournissent les solutions de l’équation u = f qui sont orthogonales aux fonctions holomorphes dans les espaces L 2 ( d σ α ) , où d σ α ( z ) = ( 1 - | z | 2 ) d λ ( z ) , d λ ( z ) étant la mesure de Lebesgue et α un réel > - 1 . Nous donnons ensuite les principales estimations dedans et au bord que vérifient ces solutions. Dans une deuxième...

Currently displaying 1 – 9 of 9

Page 1