Previous Page 2

Displaying 21 – 26 of 26

Showing per page

Hyperbolic measure of maximal entropy for generic rational maps of k

Gabriel Vigny (2014)

Annales de l’institut Fourier

Let f be a dominant rational map of k such that there exists s < k with λ s ( f ) > λ l ( f ) for all l . Under mild hypotheses, we show that, for A outside a pluripolar set of Aut ( k ) , the map f A admits a hyperbolic measure of maximal entropy log λ s ( f ) with explicit bounds on the Lyapunov exponents. In particular, the result is true for polynomial maps hence for the homogeneous extension of f to k + 1 . This provides many examples where non uniform hyperbolic dynamics is established.One of the key tools is to approximate the graph of a meromorphic...

Hyperbolicity and integral points off divisors in subgeneral position in projective algebraic varieties

Do Duc Thai, Nguyen Huu Kien (2015)

Acta Arithmetica

The purpose of this article is twofold. The first is to find the dimension of the set of integral points off divisors in subgeneral position in a projective algebraic variety V k ̅ m , where k is a number field. As consequences, the results of Ru-Wong (1991), Ru (1993), Noguchi-Winkelmann (2003) and Levin (2008) are recovered. The second is to show the complete hyperbolicity of the complement of divisors in subgeneral position in a projective algebraic variety V m .

Hyperbolic-like manifolds, geometrical properties and holomorphic mappings

Grzegorz Boryczka, Luis Tovar (1996)

Banach Center Publications

The authors are dealing with the Dirichlet integral-type biholomorphic-invariant pseudodistance ρ X α ( z 0 , z ) [ ] introduced by Dolbeault and Ławrynowicz (1989) in connection with bordered holomorphic chains of dimension one. Several properties of the related hyperbolic-like manifolds are considered remarking the analogies with and differences from the familiar hyperbolic and Stein manifolds. Likewise several examples are treated in detail.

Currently displaying 21 – 26 of 26

Previous Page 2