Horospheres and Iterates of Holomorphic Maps.
Let be a dominant rational map of such that there exists with for all . Under mild hypotheses, we show that, for outside a pluripolar set of , the map admits a hyperbolic measure of maximal entropy with explicit bounds on the Lyapunov exponents. In particular, the result is true for polynomial maps hence for the homogeneous extension of to . This provides many examples where non uniform hyperbolic dynamics is established.One of the key tools is to approximate the graph of a meromorphic...
The purpose of this article is twofold. The first is to find the dimension of the set of integral points off divisors in subgeneral position in a projective algebraic variety , where k is a number field. As consequences, the results of Ru-Wong (1991), Ru (1993), Noguchi-Winkelmann (2003) and Levin (2008) are recovered. The second is to show the complete hyperbolicity of the complement of divisors in subgeneral position in a projective algebraic variety
The authors are dealing with the Dirichlet integral-type biholomorphic-invariant pseudodistance introduced by Dolbeault and Ławrynowicz (1989) in connection with bordered holomorphic chains of dimension one. Several properties of the related hyperbolic-like manifolds are considered remarking the analogies with and differences from the familiar hyperbolic and Stein manifolds. Likewise several examples are treated in detail.