Displaying 61 – 80 of 463

Showing per page

Biholomorphic maps determined on the boundary

Nozomu Mochizuki (1977)

Annales de l'institut Fourier

Let D be a bounded domain in C n such that the boundary b D is topologically S 2 n - 1 in R 2 n with a regular point; let f : D ˜ C n be a holomorphic map where D ˜ is a neighborhood of D . If f is one-to-one when restricted to b D , then f : D f ( D ) is biholomorphic.

B-regularity of certain domains in ℂⁿ

Nguyen Quang Dieu, Nguyen Thac Dung, Dau Hoang Hung (2005)

Annales Polonici Mathematici

We study the B-regularity of some classes of domains in ℂⁿ. The results include a complete characterization of B-regularity in the class of Reinhardt domains, we also give some sufficient conditions for Hartogs domains to be B-regular. The last result yields sufficient conditions for preservation of B-regularity under holomorphic mappings.

Cartan-Chern-Moser theory on algebraic hypersurfaces and an application to the study of automorphism groups of algebraic domains

Xiaojun Huang, Shanyu Ji (2002)

Annales de l’institut Fourier

For a strongly pseudoconvex domain D n + 1 defined by a real polynomial of degree k 0 , we prove that the Lie group Aut ( D ) can be identified with a constructible Nash algebraic smooth variety in the CR structure bundle Y of D , and that the sum of its Betti numbers is bounded by a certain constant C n , k 0 depending only on n and k 0 . In case D is simply connected, we further give an explicit but quite rough bound in terms of the dimension and the degree of the defining polynomial. Our approach is to adapt the Cartan-Chern-Moser...

Certain partial differential subordinations on some Reinhardt domains in n

Gabriela Kohr, Mirela Kohr (1997)

Annales Polonici Mathematici

We obtain an extension of Jack-Miller-Mocanu’s Lemma for holomorphic mappings defined in some Reinhardt domains in n . Using this result we consider first and second order partial differential subordinations for holomorphic mappings defined on the Reinhardt domain B 2 p with p ≥ 1.

Classes de Nevanlinna sur une intersection d'ouverts strictement pseudoconvexes.

Chantal Menini (1995)

Publicacions Matemàtiques

On a finite intersection of strictly pseudoconvex domains we define two kinds of natural Nevanlinna classes in order to take the growth of the functions near the sides or the edges into account. We give a sufficient Blaschke type condition on an analytic set for being the zero set of a function in a given Nevanlinna class. On the other hand we show that the usual Blaschke condition is not necessary here.

Currently displaying 61 – 80 of 463