Displaying 101 – 120 of 392

Showing per page

Equidistribution estimates for Fekete points on complex manifolds

Nir Lev, Joaquim Ortega-Cerdà (2016)

Journal of the European Mathematical Society

We study the equidistribution of Fekete points in a compact complex manifold. These are extremal point configurations defined through sections of powers of a positive line bundle. Their equidistribution is a known result. The novelty of our approach is that we relate them to the problem of sampling and interpolation on line bundles, which allows us to estimate the equidistribution of the Fekete points quantitatively. In particular we estimate the Kantorovich–Wasserstein distance of the Fekete points...

Extension of holomorphic bundles to the disc (and Serre’s Problem on Stein bundles)

Jean-Pierre Rosay (2007)

Annales de l’institut Fourier

Holomorphic bundles, with fiber n , defined on open sets in by locally constant transition automorphisms, are shown to extend to holomorphic bundles on the Riemann sphere. In particular, it allows us to give an example of a non-Stein holomorphic bundle on the unit disc, with polynomial transition automorphisms.

Faisceaux analytiques semi-cohérents

Jean Merrien (1980)

Annales de l'institut Fourier

Nous définissons deux notions nouvelles en géométrie analytique réelle, celle de fonction Nash-analytique et celle de faisceau semi-cohérent. Avec ces notions, nous obtenons des théorèmes de cohérence analogues à ceux du cas complexe (théorème de cohérence d’Oka, théorème de l’image directe, cohérence d’un ensemble analytique complexe).

Currently displaying 101 – 120 of 392