The search session has expired. Please query the service again.
This paper is one in a series generalizing our results in [12, 14, 15, 20] on the existence of extremal metrics to the general almost-homogeneous manifolds of cohomogeneity one. In this paper, we consider the affine cases with hypersurface ends. In particular, we study the existence of Kähler-Einstein metrics on these manifolds and obtain new Kähler-Einstein manifolds as well as Fano manifolds without Kähler-Einstein metrics. As a consequence of our study, we also give a solution to the problem...
Using exhaustion properties of invariant plurisubharmonic functions along with basic combinatorial information on toric varieties, we prove convergence results for sequences of densities for eigensections approaching a semiclassical ray. Here is a normal compact toric variety and is an ample line bundle equipped with an arbitrary positive bundle metric which is invariant with respect to the compact form of the torus. Our work was motivated by and extends that of Shiffman, Tate and Zelditch....
Currently displaying 1 –
2 of
2