Page 1

Displaying 1 – 1 of 1

Showing per page

Hyperplane section 𝕆 0 2 of the complex Cayley plane as the homogeneous space F 4 / P 4

Karel Pazourek, Vít Tuček, Peter Franek (2011)

Commentationes Mathematicae Universitatis Carolinae

We prove that the exceptional complex Lie group F 4 has a transitive action on the hyperplane section of the complex Cayley plane 𝕆 2 . Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of Spin ( 9 , ) F 4 . Moreover, we identify the stabilizer of the F 4 -action as a parabolic subgroup P 4 (with Levi factor B 3 T 1 ) of the complex Lie group F 4 . In the real case we obtain an analogous realization of F 4 ( - 20 ) / .

Currently displaying 1 – 1 of 1

Page 1