Page 1

Displaying 1 – 3 of 3

Showing per page

Oka manifolds: From Oka to Stein and back

Franc Forstnerič (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Oka theory has its roots in the classical Oka-Grauert principle whose main result is Grauert’s classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomorphic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989.In this expository paper we discuss Oka manifolds and Oka maps. We describe equivalent characterizations...

On complete intersections

Franc Forstnerič (2001)

Annales de l’institut Fourier

We construct closed complex submanifolds of n which are differential but not holomorphic complete intersections. We also prove a homotopy principle concerning the removal of intersections with certain complex subvarieties of n .

On regular Stein neighborhoods of a union of two totally real planes in ℂ²

Tadej Starčič (2016)

Annales Polonici Mathematici

We find regular Stein neighborhoods of a union of totally real planes M = (A+iI)ℝ² and N = ℝ² in ℂ², provided that the entries of a real 2 × 2 matrix A are sufficiently small. A key step in our proof is a local construction of a suitable function ρ near the origin. The sublevel sets of ρ are strongly Levi pseudoconvex and admit strong deformation retraction to M ∪ N.

Currently displaying 1 – 3 of 3

Page 1