The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Oka theory has its roots in the classical Oka-Grauert principle whose main result is Grauert’s classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomorphic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989.In this expository paper we discuss Oka manifolds and Oka maps. We describe equivalent characterizations...
We construct closed complex submanifolds of which are differential but not
holomorphic complete intersections. We also prove a homotopy principle concerning the
removal of intersections with certain complex subvarieties of .
We find regular Stein neighborhoods of a union of totally real planes M = (A+iI)ℝ² and N = ℝ² in ℂ², provided that the entries of a real 2 × 2 matrix A are sufficiently small. A key step in our proof is a local construction of a suitable function ρ near the origin. The sublevel sets of ρ are strongly Levi pseudoconvex and admit strong deformation retraction to M ∪ N.
Currently displaying 1 –
3 of
3