Computing Gauss-Manin systems for complete intersection singularities .
On construit un transport transverse aux fibres d’une fonction multivaluée de type ( complexes), à l’origine de . Ce transport est unique à isotopie près. On en déduit l’existence de voisinages réguliers dans lesquels les fibres sont toutes difféomorphes (voire dans un cas quasi-homogène, analytiquement difféomorphes). On obtient également une généralisation de la notion de monodromie. On calcule enfin l’homologie évanescente de la fibre-type, en précisant le gradué qui lui est associé.