Displaying 181 – 200 of 346

Showing per page

Local Peak Sets in Weakly Pseudoconvex Boundaries in n

Borhen Halouani (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

We give a sufficient condition for a C ω (resp. C )-totally real, complex-tangential, ( n - 1 ) -dimensional submanifold in a weakly pseudoconvex boundary of class C ω (resp. C ) to be a local peak set for the class 𝒪 (resp. A ). Moreover, we give a consequence of it for Catlin’s multitype.

Maximum modulus sets

Thomas Duchamp, Edgar Lee Stout (1981)

Annales de l'institut Fourier

We investigate some aspects of maximum modulus sets in the boundary of a strictly pseudoconvex domain D of dimension N . If Σ b D is a smooth manifold of dimension N and a maximum modulus set, then it admits a unique foliation by compact interpolation manifolds. There is a semiglobal converse in the real analytic case. Two functions in A 2 ( D ) with the same smooth N -dimensional maximum modulus set are analytically related and are polynomially related if a certain homology class in H 1 ( D , R ) vanishes or if D C N is polynomially...

Mixed-norm spaces and interpolation

Joaquín Ortega, Joan Fàbrega (1994)

Studia Mathematica

Let D be a bounded strictly pseudoconvex domain of n with smooth boundary. We consider the weighted mixed-norm spaces A δ , k p , q ( D ) of holomorphic functions with norm f p , q , δ , k = ( | α | k ʃ 0 r 0 ( ʃ D r | D α f | p d σ r ) q / p r δ q / p - 1 d r ) 1 / q . We prove that these spaces can be obtained by real interpolation between Bergman-Sobolev spaces A δ , k p ( D ) and we give results about real and complex interpolation between them. We apply these results to prove that A δ , k p , q ( D ) is the intersection of a Besov space B s p , q ( D ) with the space of holomorphic functions on D. Further, we obtain several properties of the mixed-norm...

Non-embeddable 1 -convex manifolds

Jan Stevens (2014)

Annales de l’institut Fourier

We show that every small resolution of a 3-dimensional terminal hypersurface singularity can occur on a non-embeddable 1 -convex manifold.We give an explicit example of a non-embeddable manifold containing an irreducible exceptional rational curve with normal bundle of type ( 1 , - 3 ) . To this end we study small resolutions of c D 4 -singularities.

On boundary behaviour of the Bergman projection on pseudoconvex domains

M. Jasiczak (2005)

Studia Mathematica

It is shown that on strongly pseudoconvex domains the Bergman projection maps a space L v k of functions growing near the boundary like some power of the Bergman distance from a fixed point into a space of functions which can be estimated by the consecutive power of the Bergman distance. This property has a local character. Let Ω be a bounded, pseudoconvex set with C³ boundary. We show that if the Bergman projection is continuous on a space E L ( Ω ) defined by weighted-sup seminorms and equipped with the topology...

Currently displaying 181 – 200 of 346