Displaying 241 – 260 of 346

Showing per page

Pseudo-convexité locale dans les variétés kahlériennes

Georges Elencwajg (1975)

Annales de l'institut Fourier

Soit D un ouvert relativement compact et localement pseudo-convexe de la variété analytique X .Alors,1) Si le fibré tangent T G ( X ) est positif, D est 0 -convexe.2) Si X admet une fonction strictement plurisousharmonique, D est de Stein.3) Si X est l’espace total d’un morphisme de Stein à base de Stein, D est de Stein.

Quantitative estimates for the Green function and an application to the Bergman metric

Klas Diederich, Gregor Herbort (2000)

Annales de l'institut Fourier

Let D n be a bounded pseudoconvex domain that admits a Hölder continuous plurisubharmonic exhaustion function. Let its pluricomplex Green function be denoted by G D ( . , . ) . In this article we give for a compact subset K D a quantitative upper bound for the supremum sup z K | G D ( z , w ) | in terms of the boundary distance of K and w . This enables us to prove that, on a smooth bounded regular domain D (in the sense of Diederich-Fornaess), the Bergman differential metric B D ( w ; X ) tends to infinity, for X n / { O } , when w D tends to a boundary point....

Regularity of varieties in strictly pseudoconvex domains.

Franc Forstneric (1988)

Publicacions Matemàtiques

We prove a theorem on the boundary regularity of a purely p-dimensional complex subvariety of a relatively compact, strictly pseudoconvex domain in a Stein manifold. Some applications describing the structure of the polynomial hull of closed curves in Cn are also given.

Currently displaying 241 – 260 of 346