Holomorphic approximation in infinite-dimensional Riemann domains
We construct a function f holomorphic in a balanced domain D in such that for every positive-dimensional subspace Π of , and for every p with 1 ≤ p < ∞, is not -integrable on Π ∩ D.
In this article we discuss the relationship between domains of existence domains of holomorphy, holomorphically convex domains, pseudo convex domains, in the context of locally convex topological vector spaces. By using the method of Hirschowitz for and the method used for Banach spaces with a basis we prove generalisations of the Cartan-Thullen-Oka-Norguet-Bremmerman theorem for finitely polynomially convex domains in a variety of locally convex spaces which include the following:1) -projective...
Let D be an open subset of a two-dimensional Stein manifold S. Then D is Stein if and only if every holomorphic line bundle L on D is the line bundle associated to some (not necessarily effective) Cartier divisor 𝔡 on D.
We show that a bounded pseudoconvex domain D ⊂ ℂⁿ is hyperconvex if its boundary ∂D can be written locally as a complex continuous family of log-Lipschitz curves. We also prove that the graph of a holomorphic motion of a bounded regular domain Ω ⊂ ℂ is hyperconvex provided every component of ∂Ω contains at least two points. Furthermore, we show that hyperconvexity is a Hölder-homeomorphic invariant for planar domains.