Page 1

Displaying 1 – 2 of 2

Showing per page

Equidistribution estimates for Fekete points on complex manifolds

Nir Lev, Joaquim Ortega-Cerdà (2016)

Journal of the European Mathematical Society

We study the equidistribution of Fekete points in a compact complex manifold. These are extremal point configurations defined through sections of powers of a positive line bundle. Their equidistribution is a known result. The novelty of our approach is that we relate them to the problem of sampling and interpolation on line bundles, which allows us to estimate the equidistribution of the Fekete points quantitatively. In particular we estimate the Kantorovich–Wasserstein distance of the Fekete points...

Extendible bases and Kolmogorov problem on asymptotics of entropy and widths of some class of analytic functions

Vyacheslav Zakharyuta (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Let K be a compact set in an open set D on a Stein manifold Ω of dimension n . We denote by H D the Banach space of all bounded and analytic in D functions endowed with the uniform norm and by A K D a compact subset of the space C K consisted of all restrictions of functions from the unit ball 𝔹 H D . In 1950ies Kolmogorov posed a problem: does ε A K D τ ln 1 ε n + 1 , ε 0 , where ε A K D is the ε -entropy of the compact A K D . We give here a survey of results concerned with this problem and a related problem on the strict asymptotics of Kolmogorov diameters...

Currently displaying 1 – 2 of 2

Page 1