Some characterizations of the class and applications
We give some characterizations of the class and use them to establish a lower estimate for the log canonical threshold of plurisubharmonic functions in this class.
We give some characterizations of the class and use them to establish a lower estimate for the log canonical threshold of plurisubharmonic functions in this class.
It is described how both plurisubharmonicity and convexity of functions can be characterized in terms of simple to work with classes of holomorphic martingales, namely a class of driftless Itô processes satisfying a skew-symmetry property and a family of linear modifications of Brownian motion parametrized by a compact set.
In the moduli space of degree rational maps, the bifurcation locus is the support of a closed positive current which is called the bifurcation current. This current gives rise to a measure whose support is the seat of strong bifurcations. Our main result says that has maximal Hausdorff dimension . As a consequence, the set of degree rational maps having distinct neutral cycles is dense in a set of full Hausdorff dimension.
The aim of the paper is to investigate subextensions with boundary values of certain plurisubharmonic functions without changing the Monge-Ampère measures. From the results obtained, we deduce that if a given sequence is convergent in -capacity then the sequence of the Monge-Ampère measures of subextensions is weakly*-convergent. As an application, we investigate the Dirichlet problem for a nonnegative measure μ in the class ℱ(Ω,g) without the assumption that μ vanishes on all pluripolar sets.
We prove that subextension of certain plurisubharmonic functions is always possible without increasing the total Monge-Ampère mass.