Apéry's double sum is plain sailing indeed.
On va étudier le comportement asymptotique d’une intégrale de type intégrale de Itzykson-Zuber et on va donner une formule pour sa limite. On va obtenir ce résultat en utilisant un théorème de Poincaré et un théorème de Minlos.
The object of the present paper is to illustrate the usefulness, in the theory of analytic functions, of various linear operators which are defined in terms of (for example) fractional derivatives and fractional integrals, Hadamard product or convolution, and so on.
2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15By making use of the fractional differential operator Ω^λz (0 ≤ λ < 1) due to Owa and Srivastava, a new subclass of univalent functions denoted by k−SPλ (0 ≤ k < ∞) is introduced. The class k−SPλ unifies the concepts of k-uniformly convex functions and k-starlike functions. Certain basic properties of k − SPλ such as inclusion theorem, subordination theorem, growth theorem and class preserving transforms are studied.*...
The -derivative operator approach is illustrated by reviewing several typical summation formulae of terminating basic hypergeometric series.
Accurate estimates of real Pochhammer products, lower (falling) and upper (rising), are presented. Double inequalities comparing the Pochhammer products with powers are given. Several examples showing how to use the established approximations are stated.
Using the -Bernstein basis, we construct a new sequence of positive linear operators in We study its approximation properties and the rate of convergence in terms of modulus of continuity.
We compute upper and lower bounds for the approximation of hyperbolic functions at points