Integrals involving product of Bessel functions and generalized hypergeometric functions.
Integrals of logarithmic and hypergeometric functions are intrinsically connected with Euler sums. In this paper we explore many relations and explicitly derive closed form representations of integrals of logarithmic, hypergeometric functions and the Lerch phi transcendent in terms of zeta functions and sums of alternating harmonic numbers.
Les valeurs aux entiers pairs (strictement positifs) de la fonction de Riemann sont transcendantes, car ce sont des multiples rationnels de puissances de . En revanche, on sait très peu de choses sur la nature arithmétique des , pour entier. Apéry a démontré en 1978 que est irrationnel. Rivoal a prouvé en 2000 qu’une infinité de sont irrationnels, mais sans pouvoir en exhiber aucun autre que . Il existe plusieurs points de vue sur la preuve d’Apéry ; celui des séries hypergéométriques...
2000 Mathematics Subject Classification: 33C60, 33C20, 44A15The paper is devoted to the study of the function Zνρ(x) defined for positive x > 0, real ρ ∈ R and complex ν ∈ C, being such that Re(ν) < 0 for ρ ≤ 0, [...] Such a function was earlier investigated for ρ > 0. Using the Mellin transform of Zνρ(x), we establish its representations in terms of the H-function and extend this function from positive x > 0 to complex z. The results obtained, being different for ρ > 0 and ρ <...
For , , , let be the -th polylogarithm of . We prove that for any non-zero algebraic number such that , the -vector space spanned by has infinite dimension. This result extends a previous one by Rivoal for rational . The main tool is a method introduced by Fischler and Rivoal, which shows the coefficients of the polylogarithms in the relevant series to be the unique solution of a suitable Padé approximation problem.
The main object of this paper is to investigate several general families of hypergeometric polynomials and their associated multiple integral representations. By suitably specializing our main results, the corresponding integral representations are deduced for such familiar classes of hypergeometric polynomials as (for example) the generalized Bedient polynomials of the first and second kinds. Each of the integral representations, which are derived in this paper, may be viewed also as a linearization...
MSC 2010: 33C20
We give a geometric descriptions of (wave) fronts in wave propagation processes. Concrete form of defining function of wave front issued from initial algebraic variety is obtained by the aid of Gauss-Manin systems associated with certain complete intersection singularities. In the case of propagations on the plane, we get restrictions on types of possible cusps that can appear on the wave front.
Mathematics Subject Classification: Primary 33E20, 44A10; Secondary 33C10, 33C20, 44A20By using integral representations for several Mathieu type series, a number of integral transforms of Hankel type are derived here for general families of Mathieu type series. These results generalize the corresponding ones on the Fourier transforms of Mathieu type series, obtained recently by Elezovic et al. [4], Tomovski [19] and Tomovski and Vu Kim Tuan [20].