Generalized Lauricella Functions with Different Multiplicities
Generating functions play a large role in the study of special functions. The present paper deals with the derivation of some novel generating functions of extended Jacobi polynomials by the application of [the] group-theoretic method introduced by Louis Weisner. In fact, by suitably interpreting the index (n) and the parameter (β) of the polynomial under consideration we define four linear partial differential operators and on showing that they generate a Lie-algebra, we obtain a new generating...
In the present paper, we investigate certain geometric properties and inequalities for the Wright function and mention a few important consequences of our main results. A nonlinear differential equation involving the Wright function is also investigated.
Consider a complex projective space with its Fubini-Study metric. We study certain one parameter deformations of this metric on the complement of an arrangement (= finite union of hyperplanes) whose Levi-Civita connection is of Dunkl type. Interesting examples are obtained from the arrangements defined by finite complex reflection groups. We determine a parameter interval for which the metric is locally of Fubini-Study type, flat, or complex-hyperbolic. We find a finite subset of this interval for...