Application of Bessel coefficients in approximative expressing of collectives
The object of the present paper is to illustrate the usefulness, in the theory of analytic functions, of various linear operators which are defined in terms of (for example) fractional derivatives and fractional integrals, Hadamard product or convolution, and so on.
2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15By making use of the fractional differential operator Ω^λz (0 ≤ λ < 1) due to Owa and Srivastava, a new subclass of univalent functions denoted by k−SPλ (0 ≤ k < ∞) is introduced. The class k−SPλ unifies the concepts of k-uniformly convex functions and k-starlike functions. Certain basic properties of k − SPλ such as inclusion theorem, subordination theorem, growth theorem and class preserving transforms are studied.*...
The -derivative operator approach is illustrated by reviewing several typical summation formulae of terminating basic hypergeometric series.
We compute upper and lower bounds for the approximation of hyperbolic functions at points
This is an expository article, based on the talk with the same title, given at the 2011 FASDE II Conference in Będlewo, Poland. In the introduction we define Multiple Zeta Values and certain historical remarks are given. Then we present several results on Multiple Zeta Values and, in particular, we introduce certain meromorphic differential equations associated to their generating function. Finally, we make some conclusive remarks on generalisations of Multiple Zeta Values as well as the meromorphic...
We analyze the Charlier polynomials C n(χ) and their zeros asymptotically as n → ∞. We obtain asymptotic approximations, using the limit relation between the Krawtchouk and Charlier polynomials, involving some special functions. We give numerical examples showing the accuracy of our formulas.
We derive the asymptotic spectral distribution of the distance k-graph of N-dimensional hypercube as N → ∞.