Displaying 101 – 120 of 222

Showing per page

Mathematical structures behind supersymmetric dualities

Ilmar Gahramanov (2015)

Archivum Mathematicum

The purpose of these notes is to give a short survey of an interesting connection between partition functions of supersymmetric gauge theories and hypergeometric functions and to present the recent progress in this direction.

On a generalization of close-to-convex functions

Swadesh Kumar Sahoo, Navneet Lal Sharma (2015)

Annales Polonici Mathematici

The paper of M. Ismail et al. [Complex Variables Theory Appl. 14 (1990), 77-84] motivates the study of a generalization of close-to-convex functions by means of a q-analog of the difference operator acting on analytic functions in the unit disk 𝔻 = {z ∈ ℂ:|z| < 1}. We use the term q-close-to-convex functions for the q-analog of close-to-convex functions. We obtain conditions on the coefficients of power series of functions analytic in the unit disk which ensure that they generate functions in...

On another extension of q -Pfaff-Saalschütz formula

Mingjin Wang (2010)

Czechoslovak Mathematical Journal

In this paper we give an extension of q -Pfaff-Saalschütz formula by means of Andrews-Askey integral. Applications of the extension are also given, which include an extension of q -Chu-Vandermonde convolution formula and some other q -identities.

Currently displaying 101 – 120 of 222