Oscillatory properties of solutions of second-order nonlinear delay differential equations
The paper deals with the higher-order ordinary differential equations and the analogous higher-order difference equations and compares the corresponding fundamental concepts. Important dissimilarities appear for the moving frame method.
We deal with the problem of practical uniform -stability for nonlinear time-varying perturbed differential equations. The main aim is to give sufficient conditions on the linear and perturbed terms to guarantee the global existence and the practical uniform -stability of the solutions based on Gronwall’s type integral inequalities. Several numerical examples and an application to control systems with simulations are presented to illustrate the applicability of the obtained results.
Dans un exposé précédent [1], nous avons justifié l’introduction de l’équation de Szegö cubique comme cas modèle d’équation de type Schrödinger sans dispersion. Ce cas modèle s’est révélé être intéressant sous divers aspects [2]. Dans cet exposé, nous nous attacherons à montrer comment la complète intégrabilité de l’équation de Szegö cubique permet de résoudre un problème spectral inverse pour les opérateurs de Hankel.