Decaying positive entire solutions of the -Laplacian
The existence of decaying positive solutions in of the equations and displayed below is considered. From the existence of such solutions for the subhomogeneous cases (i.e. as ), a super-sub-solutions method (see § 2.2) enables us to obtain existence theorems for more general cases.
The existence of the normalizing transformation completely decoupling the stable dynamic from the center manifold dynamic is proved. A numerical procedure for the calculation of the asymptotic series for the decoupling normalizing transformation is proposed. The developed method is especially important for the perturbation theory of center manifold and, in particular, for the local stabilization theory. In the paper some sufficient conditions for local stabilization are given.
In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.
In this article a method is presented to find systematically the domain of attraction (DOA) of hybrid non-linear systems. It has already been shown that there exists a sequence of special kind of Lyapunov functions in a rational functional form approximating a maximal Lyapunov function that can be used to find an estimation for the DOA. Based on this idea, an improved method has been developed and implemented in a Mathematica-package to find such Lyapunov functions for a class of hybrid (piecewise...