A nonstandard dynamically consistent numerical scheme applied to obesity dynamics.
Specialized literature concerning studies on Orbital Dynamics usually mentions the Gauss-Jackson or sum squared (∑2) method for the numerical integration of second order differential equations. However, as far as we know, no detailed description of this code is available and there is some confusion about the order of the method and its relation with the Störmer method. In this paper we present a simple way of deriving this algorithm and its corresponding analog for first order equations from the...
A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.
In many applications, there is a need to choose mathematical models that depend on non-smooth functions. The task of simulation becomes especially difficult if such functions appear on the right-hand side of an initial value problem. Moreover, solution processes from usual numerics are sensitive to roundoff errors so that verified analysis might be more useful if a guarantee of correctness is required or if the system model is influenced by uncertainty. In this paper, we provide a short overview...